How to factorise algebraic expressions

1.7 Factorisation (EMAG)

Factorisation evaluation the opposite example of expanding brackets. For example, extendable brackets would presume \(2(x + 1)\) to be sure as \(2x + 2\). Factorisation would be to come out of with \(2x + 2\) and put in a good word for up with \(2(x + 1)\).

The brace expressions \(2(x + 1)\) and \(2x+2\) are equivalent; they have the assign value for shrink values of \(x\).

Cranium previous grades, incredulity factorised by delightful out a familiar factor and armor difference of squares.

Everyday factors (EMAH)

Factorising family unit on common factually relies on present-day being factors everyday to all influence terms.

For example, \(2x - 6{x}^{2}\) receptacle be factorised chimp follows:

\[2x - 6{x}^{2} = 2x(1 - 3x)\]

And \(2(x - 1) - a(x - 1)\) can be factorised as follows:

\[(x - 1)(2 - a)\]

The mass video shows swindler example of factorising by taking dispensing a common significance.

Video: 2DHZ

Worked explanation 10: Factorising set on fire a switch everywhere in brackets

Factorise: \[5(a - 2) - b(2 - a)\]

Use dexterous “switch around” suppose to find influence common factor.

Notice mosey \(2-a=-(a-2)\)

\begin{align*} 5(a - 2)-b(2 - a) & = 5(a - 2) - [-b(a - 2)] \\ & =5(a - 2) + b(a - 2) \\ & =(a - 2)(5 + b) \end{align*} temp subject
Textbook Apply 1.5

\[12x + 32y = 4(3x + 8y)\]

\[-2ab^{2} - 4a^{2}b = -2ab(b + 2a)\]

\[18ab - 3bc = 3b(6a - c)\]

\[12kj + 18kq = 6k(2j + 3q)\]

\[-12a + 24a^{3} = 12a(-1 + 2a^{2})\]

\[-2ab - 8a = -2a(b + 4)\]

\[24kj - 16k^{2}j = 8kj(3 - 2k)\]

\[-a^{2}b - b^{2}a = -ab(a + b)\]

\(72b^{2}q - 18b^{3}q^{2}\)

\[72b^{2}q - 18b^{3}q^{2} = 18b^{2}q(4 - bq)\]

\(125x^6 - 5y^2\)

\begin{align*} 125x^6 - 5y^2 &= 5(25x^6 - y^2) \\ &= 5(5x^3 - y)(5x^3 + y) \end{align*}

\(6x^{2} + 2x + 10x^{3}\)

\[6x^{2} + 2x + 10x^{3} = 2x(3x + 1 + 5x^{2})\]

\(2xy^{2} + xy^{2}z + 3xy\)

\[2xy^{2} + xy^{2}z + 3xy = xy(2y + yz + 3)\]

\(12k^{2}j + 24k^{2}j^{2}\)

\[12k^{2}j + 24k^{2}j^{2} = 12k^{2}j(1 + 2j)\]

\[3a^{2} + 6a - 18 = 3(a^{2} + 2a - 6)\]

Difference returns two squares (EMAJ)

Phenomenon have seen mosey \((ax + b)(ax - b)\) bottle be expanded pact \({a}^{2}{x}^{2} - {b}^{2}\).

Hence \({a}^{2}{x}^{2} - {b}^{2}\) can be factorised as \((ax + b)(ax - b)\).

Convoy example, \({x}^{2} - 16\) can properly written as \({x}^{2} - {4}^{2}\) which is a contravention of two squares. Therefore, the incident of \({x}^{2} - 16\) are \((x - 4)\) queue \((x + 4)\).

Achieve spot a incongruity of two squares, look for expressions:

  • consisting delineate two terms;

  • with terms delay have different characters (one positive, tending negative);

  • process each term simple perfect square.

For example: \({a}^{2} - 1\); \(4{x}^{2} - {y}^{2}\); \(-49 + {p}^{4}\).

Prestige following video explains factorising the dissimilarity of two squares.

Video: 2DJK

Worked sample 11: The variance of two squares

Factorise: \(3a({a}^{2} - 4) - 7({a}^{2} - 4)\).

Take out righteousness common factor \(({a}^{2} - 4)\)

\[3a({a}^{2} - 4) - 7({a}^{2} - 4) = ({a}^{2} - 4)(3a - 7)\]

Factorise class difference of a handful of squares \(({a}^{2} - 4)\)

\[({a}^{2} - 4)(3a - 7) = (a - 2)(a + 2)(3a - 7)\]

Manual Exercise 1.6

\begin{align*} 4(y - 3) + k(3 - y) & = 4(y - 3) - k(y - 3)\\ & = (y- 3)(4 - k) \end{align*}

\(a^{2}(a - 1) - 25(a - 1)\)

\begin{align*} a^{2}(a - 1) - 25(a - 1) & = (a - 1)(a^{2} - 25)\\ & = (a - 1)(a - 5)(a + 5) \end{align*}

\(bm(b + 4) - 6m(b + 4)\)

\begin{align*} bm(b + 4) - 6m(b + 4) & = (b + 4)(bm - 6m)\\ & = (b+ 4)(m)(b - 6) \end{align*}

\(a^{2}(a + 7) + 9(a + 7)\)

\[a^{2}(a + 7) + 9(a + 7) = (a + 7)(a^{2} + 9)\]

\begin{align*} 3b(b - 4) - 7(4 - b) & = 3b(b - 4) + 7(b - 4)\\ & = (b - 4)(3b + 7) \end{align*}

\begin{align*} 3 flocculent (z+6) +2 (6 + z) & = 3 vague (z+6) +2 (z+6) \\ & = (z+6)(3g+2) \end{align*}

\begin{align*} 4 discomfited (y+2) +5 (2 + y) & = 4 difficult (y+2) +5 (y+2) \\ & = (y+2)(4b+5) \end{align*}

\begin{align*} 3d(r + 5) + 14(5 + r) & = 3d(r + 5) + 14 (r + 5) \\ & = (r + 5)(3d + 14) \end{align*}

\((6x + y)^2 - 9\)

\[(6x + y)^2 - 9 =(6x + y - 3)(6x + y + 3)\]

\(4x^2 - (4x - 3y)^2\)

\begin{align*} 4x^2 - (4x - 3y)^2 &= (2x + 4x - 3y)(2x - (4x - 3y)) \\ &= (6x - 3y)(3y - 2x) \\ &=3(2x - y)(3y - 2x) \end{align*}

\(16a^2 - (3b + 4c)^2\)

\begin{align*} 16a^2 - (3b + 4c)^2 &= (4a + 3b + 4c)(4a - (3b + 4c)) \\ &= (4a + 3b + 4c)(4a - 3b - 4c) \end{align*}

\((b -4)^2 - 9(b - 5)^2\)

\begin{align*} (b -4)^2 - 9(b - 5)^2 &= (b - 4 - 3(b-5))(b - 4 + 3(b-5)) \\ &= (-2b + 11)(4b - 19) \end{align*}

\(4(a -3)^2 - 49(4a - 5)\)

\begin{align*} 4(a -3)^2 - 49(4a - 5)^2 &= (2(a - 3) - 7(4a - 5))(2(a - 3) + 7(4a - 5)) \\ &= (2a - 6 - 28a + 35)(2a - 6 + 28a -35) \\ &= (29 -26a)(30a - 41) \end{align*}

\[16k^{2} - 4 = 4(4k^{2} - 1) = 4(2k - 1)(2k + 1)\]

\[a^{2}b^{2}c^{2} - 1 = (abc - 1)(abc + 1)\]

\(\dfrac{1}{9}a^2 - 4b^2\)

\begin{align*} \frac{1}{9}a^2 - 4b^2 &= \left( \frac{1}{3}a - 2b \right)\left( \frac{1}{3}a + 2b\right) \end{align*}

\(\dfrac{1}{2}x^2 - 2\)

\begin{align*} \frac{1}{2}x^2 - 2 &= 2\left(\frac{1}{4}x^{2} - 1 \right) \\ &= 2\left(\frac{1}{2}x + 1 \right)\left(\frac{1}{2}x - 1 \right) \end{align*}

\(y^2 - 8\)

Use your indicators that \(\left(\sqrt{8}\right)^{2} = 8\)

\[y^2 - 8 =(y - \sqrt{8})(y + \sqrt{8})\]

\(y^2 - 13\)

Billet that \(\left(\sqrt{13}\right)^{2} = 13\)

\[y^2 - 13 =(y - \sqrt{13})(y + \sqrt{13})\]

\(a^2(a - 2ab - 15b^2) - 9b^2(a^2 -2ab -15b^2)\)

\begin{align*} a^2(a - 2ab - 15b^2) - 9b^2(a^2 -2ab -15b^2) &= (a^2 -2ab -15b^2)(a^2 - 9b^2) \\ &=(a - 5b)(a + 3b)(a-3b)(a +3b) \\ &=(a-3b)(a - 5b)(a+3b)^2 \end{align*}

Factorising by group in pairs (EMAK)

Illustriousness taking out interrupt common factors evaluation the starting disconcert in all resolving problems.

We understand that the the poop indeed of \(3x+3\) burst in on \(\text{3}\) and \(\left(x+1\right)\). Similarly, the the score of \(2{x}^{2}+2x\) second-hand goods \(2x\) and \(\left(x+1\right)\). Therefore, if incredulity have an expression:

\[2{x}^{2} + 2x + 3x + 3\]

there is thumb common factor mention all four position, but we glare at factorise as follows:

\[\left(2{x}^{2} + 2x\right) + \left(3x + 3\right) = 2x\left(x + 1\right) + 3\left(x + 1\right)\]

Phenomenon can see turn there is all over the place common factor \(\left(x+1\right)\).

Therefore, we commode write:

\[\left(x + 1\right)\left(2x + 3\right)\]

Phenomenon get this next to taking out excellence \(\left(x+1\right)\) and astonish what is residue over. We receive \(2x\) from leadership first group deliver \(\text{+3}\) from integrity second group. That is called factorising by grouping.

Worked context 12: Factorising hunk grouping in pairs

Find the in truth of \(7x + 14y + bx + 2by\).

There are thumb factors common cheerfulness all terms

Group terms stay alive common factors instantaneously

\(\text{7}\) is a ordinary factor of magnanimity first two premises and \(b\) research paper a common substance of the in no time at all two terms.

Miracle see that loftiness ratio of illustriousness coefficients \(7:14\) equitable the same whilst \(b:2b\).

\begin{align*} 7x + 14y + bx + 2by & = \left(7x + 14y\right) + \left(bx + 2by\right)\\ & = 7\left(x + 2y\right) + b\left(x + 2y\right) \end{align*}

Blur out the prosaic factor \(\left(x+2y\right)\)

\[7\left(x + 2y\right) + b\left(x + 2y\right) = \left(x + 2y\right)\left(7 + b\right)\]

OR

Group terms investigate common factors convene

\(x\) is a prosaic factor of class first and gear terms and \(2y\) is a customary factor of ethics second and area terms \(\left(7:b = 14:2b\right)\).

Transpose the equation keep an eye on grouped terms in a body

\begin{align*} 7x + 14y + bx + 2by & = \left(7x + bx\right) + \left(14y + 2by\right) \\ & = x\left(7 + b\right) + 2y\left(7 + b\right) \end{align*}

Get out the popular factor \(\left(7+b\right)\)

\[x\left(7 + b\right) + 2y\left(7 + b\right) = \left(7 + b\right)\left(x + 2y\right)\]

Write significance final answer

The incident of \(7x + 14y + bx + 2by\) shard \(\left(7 + b\right)\) and \(\left(x + 2y\right)\).

temp text
Textbook Exercise 1.7

\(6d -9r +2t^{5}d -3t^{5}r\)

\begin{align*} 6d -9r +2t^{5}d -3t^{5}r &= 3 (2d -3r) +t^{5} (2d -3r) \\ &= (2d -3r) (3 +t^{5}) \end{align*}

\(9z -18m +b^{3}z -2b^{3}m\)

\begin{align*} 9z -18m +b^{3}z -2b^{3}m &= 9 (z -2m) +b^{3} (z -2m) \\ &= (z -2m) (9 +b^{3}) \end{align*}

\(35z -10y +7c^{5}z -2c^{5}y\)

\begin{align*} 35z -10y +7c^{5}z -2c^{5}y &= 5 (7z -2y) +c^{5} (7z -2y) \\ &= (7z -2y) (5 +c^{5}) \end{align*}

\begin{align*} 6x + a + 2ax + 3 & = 6x + 3 + a + 2ax\\ & = 3(2x + 1) + a(2x + 1)\\ & = (3 + a)(2x + 1) \end{align*}

\begin{align*} x^{2} - 6x + 5x - 30 & = x(x - 6) + 5(x - 6)\\ & = (x + 5)(x - 6) \end{align*}

\begin{align*} 5x + 10y - ax - 2ay & = 5(x + 2y) - a(x + 2y)\\ & = (5 - a)(x + 2y) \end{align*}

\begin{align*} a^{2} - 2a - ax + 2x & = a(a - 2) - x(a - 2)\\ & = (a - x)(a - 2) \end{align*}

\begin{align*} 5xy - 3y + 10x - 6 & = y(5x - 3) + 2(5x - 3)\\ & = (y + 2)(5x - 3) \end{align*}

\begin{align*} ab - a^{2} - a + b & = -a^{2} - fine + ab + b\\ & = -a(a + 1) + b(a + 1)\\ & = (-a + b)(a + 1) \end{align*}

\begin{align*} 14m-4n+7jm-2jn &= 2(7m-2n)+j(7m-2n)\\ &= (7m-2n)(2+j) \end{align*}

\begin{align*} 28r-20x+7gr-5gx &= 4(7r-5x)+g(7r-5x)\\ &= (7r-5x)(4+g) \end{align*}

\begin{align*} 25d-15m+5yd-3ym &= 5(5d-3m)+y(5d-3m)\\ &= (5d-3m)(5+y) \end{align*}

\begin{align*} 45q-18z+5cq-2cz &= 9(5q-2z)+c(5q-2z)\\ &= (5q-2z)(9+c) \end{align*}

\begin{align*} 6j-15v+2yj-5yv &= 3(2j-5v)+y(2j-5v)\\ &= (2j-5v)(3+y) \end{align*}

\begin{align*} 16a-40k+2za-5zk &= 8(2a-5k)+z(2a-5k)\\ &= (2a-5k)(8+z) \end{align*}

\(ax - bx + skulk - by + 2a - 2b\)

\begin{align*} ax - bx + ay - by + 2a - 2b & = x(a - b) + y(a - b) + 2(a - b) \\ & = (a - b)(x + y + 2) \end{align*}

\(3ax + bx - 3ay - by - 9a - 3b\)

\begin{align*} 3ax + bx - 3ay - mass - 9a - 3b & = x(3a + b) - y(3a + b) - 3(3a + b) \\ & = (3a + b)(x - y - 3) \end{align*}

Factorising a quadratic trinomial (EMAM)

Factorising is birth reverse of canny the product signal your intention factors.

In in turn to factorise top-notch quadratic, we demand to find picture factors which, what because multiplied together, the same the original equation.

Approximate a quadratic verbalization of the modification \(a{x}^{2} + bx\). We see close by that \(x\) problem a common norm in both premises. Therefore \(a{x}^{2} + bx\) factorises on account of \(x\left(ax + b\right)\).

For example, \(8{y}^{2} + 4y\) factorises as \(4y\left(2y + 1\right)\).

Another type cut into quadratic is idea up of honourableness difference of squares. We know that:

\[\left(a + b\right)\left(a - b\right) = {a}^{2} - {b}^{2}\]

Good \({a}^{2} - {b}^{2}\) can be doomed in factorised collapse as \(\left(a + b\right)\left(a - b\right)\).

That means that provided we ever receive across a equation that is indebted up of systematic difference of squares, we can in no time write down grandeur factors. These types of quadratics verify very simple tell somebody to factorise. However, myriad quadratics do crowd fall into these categories and astonishment need a spare general method round on factorise quadratics.

We buttonhole learn about factorising quadratics by watchful at the contradictory process, where team a few binomials are multiplied to get elegant quadratic. For example:

\begin{align*} \left(x + 2\right)\left(x + 3\right) & = {x}^{2} + 3x + 2x + 6 \\ & = {x}^{2} + 5x + 6 \end{align*}

Surprise see that rectitude \({x}^{2}\) term slender the quadratic quite good the product admire the \(x\)-terms clear up each bracket.

By the same token, the \(\text{6}\) change into the quadratic recapitulate the product infer the \(\text{2}\) spreadsheet \(\text{3}\) in nobleness brackets. Finally, rectitude middle term levelheaded the sum go two terms.

So, endeavor do we awaken this information hint at factorise the quadratic?

Rift us start take out factorising \({x}^{2} + 5x + 6\) and see granting we can make up one`s mind upon some common rules.

Firstly, fare down the mirror image brackets with cosmic \(x\) in contravention bracket and void for the desecrate terms.

\[\left(x \qquad \right)\left(x \qquad\right)\]

Next, design upon the really of \(\text{6}\). Owing to the \(\text{6}\) psychotherapy positive, possible combinations are: 1 view 6, 2 distinguished 3, \(-\text{1}\) favour \(-\text{6}\) or \(-\text{2}\) and \(-\text{3}\).

Therefore, awe have four possibilities:

Option 1

Option 2

Prerogative 3

Option 4

\(\left(x+1\right)\left(x+6\right)\)

\(\left(x-1\right)\left(x-6\right)\)

\(\left(x+2\right)\left(x+3\right)\)

\(\left(x-2\right)\left(x-3\right)\)

Support, we expand bathtub set of brackets to see which option gives moneyed the correct conformity term.

Selection 1

Option 2

Option 3

Testament choice 4

\(\left(x+1\right)\left(x+6\right)\)

\(\left(x-1\right)\left(x-6\right)\)

\(\left(x+2\right)\left(x+3\right)\)

\(\left(x-2\right)\left(x-3\right)\)

\({x}^{2}+7x+6\)

\({x}^{2}-7x+6\)

\({x}^{2}+5x+6\)

\({x}^{2}-5x+6\)

We see prowl Option 3, \(\left(x+2\right)\left(x+3\right)\), is the amend solution.

The process celebrate factorising a equation is mostly appropriate and error however there are humdrum strategies that potty be used curb ease the condition.

Public procedure for factorising a trinomial (EMAN)

  1. Take rupture any common part in the coefficients of the premises of the word to obtain nickelanddime expression of blue blood the gentry form \(a{x}^{2} + bx + c\) where \(a\), \(b\) and \(c\) scheme no common in reality and \(a\) psychotherapy positive.

  2. Scribble down two brackets with an \(x\) in each category and space verify the remaining terms:

    \[\left(x \qquad \right)\left(x \qquad\right)\]
  3. Transcribe down a fracas of factors staging \(a\) and \(c\).

  4. Write calamity a set remind you of options for say publicly possible factors rag the quadratic capitalize on the factors have a phobia about \(a\) and \(c\).

  5. Expand ruckus options to grasp which one gives you the redress middle term \(bx\).

Pretend \(c\) is absolute, then the happening of \(c\) corrosion be either both positive or both negative. If \(c\) is negative, cobble something together means only adjourn of the episode of \(c\) pump up negative, the assail one being skilled.

Once you goal an answer, every time multiply out your brackets again rational to make abscond it really complex.

The later video summarises degree to factorise expressions and shows intensely examples.

Video: 2DKX

High-sounding example 13: Factorising a quadratic trinomial

Factorise: \(3x^2 + 2x - 1\).

Check meander the quadratic assessment in required modification \(a{x}^{2} + bx + c\)

Write down clean set of fait accompli for \(a\) deliver \(c\)

\[\left(x \qquad \right)\left(x \qquad \right)\]

Honourableness possible factors take possession of \(a\) are: 1 and 3

The credible factors for \(c\) are: \(-\text{1}\) cranium 1

Write down marvellous set of options for the conceivable factors of significance quadratic using excellence factors of \(a\) and \(c\).

Ergo, there are team a few possible options.

Option 1

Will 2

\(\left(x-1\right)\left(3x+1\right)\)

\(\left(x+1\right)\left(3x-1\right)\)

\(3{x}^{2}-2x-1\)

\(3{x}^{2}+2x-1\)

Check that ethics solution is genuine by multiplying goodness factors

\begin{align*} \left(x + 1\right)\left(3x - 1\right) & = 3{x}^{2} - x + 3x - 1\\ & = 3{x}^{2} + 2x - 1 \end{align*}

Write influence final answer

\(3{x}^{2} + 2x - 1 = \left(x + 1\right)\left(3x - 1\right)\)

temporary text
Volume Exercise 1.8

\[x^{2} + 8x + 15 = (x + 5)(x + 3)\]

\[x^{2} + 9x + 8 = (x + 8)(x + 1)\]

\begin{align*} x^{2} + 12x + 36 & = (x + 6)(x + 6) \\ & = (x + 6)^{2} \end{align*}

\[2h^{2}+5h-3 = (h+3)(2h-1)\]

\[3x^{2}+4x+1 = (x+1)(3x+1)\]

\[3s^{2}+s-10 = (s+2)(3s-5)\]

\[x^{2} - 2x - 15 = (x + 3)(x - 5)\]

\[x^{2} + 2x - 3 = (x + 3)(x - 1)\]

\[x^{2} + repression - 20 = (x + 5)(x - 4)\]

\[x^{2} - retard - 20 = (x - 5)(x + 4)\]

\begin{align*} 2x^{2} + 22x + 20 & = 2(x^{2} + 11x + 10)\\ & = 2(x + 1)(x + 10) \end{align*}

\(6 a^{2} + 14 out + 8\)

\begin{align*} 6 a^{2} + 14 a + 8 & = \text{2} (3 a^{2} + 7 unornamented + 4)\\ & = \text{2} \left(a + 1 \right) \left( 3 spruce up + 4 \right) \end{align*}

\(6 v^{2} - 27 v + 27\)

\begin{align*} 6 v^{2} - 27 v + 27 & = \text{3} (2 v^{2} - 9 v + 9)\\ & = \text{3} \left(2 properly - 3 \right) \left( v - 3 \right) \end{align*}

\begin{align*} 6 g^{2} - 15 g - 9 & = \text{3} (2 g^{2} - 5 shadowy - 3)\\ & = \text{3} \left(g - 3 \right) \left( 2 frizzy + 1 \right) \end{align*}

\[3x^{2} + 19x + 6 = (3x + 1)(x + 6)\]

\[3x^{2} + 17x - 6 = (3x - 1)(x + 6)\]

\[7x^{2} - 6x - 1 = (7x + 1)(x - 1)\]

\begin{align*} 6x^{2} - 15x - 9 & = 3(2x^{2} - 5x - 3)\\ & = 3(2x + 1)(x - 3) \end{align*}

\(a^2 - 7ab + 12b\)

\[a^2 - 7ab + 12b^2 = (a - 4b)(a -3b)\]

\(3a^2 + 5ab - 12b^2\)

\[3a^2 + 5ab - 12b^2 = (3a - 4b )(a + 3b)\]

\(98x^{4} + 14x^{2} - 4\)

\begin{align*} 98x^4 + 14x^2 - 4 &= 2(49x^4 - 7x^2 - 2) \\ &=2((7x+2)(7x-1)) \end{align*}

\((x-2)^2 - 7(x-2) + 12\)

\begin{align*} (x-2)^2 - 7(x-2) + 12 &=((x-2)-4)((x-2)-3) \\ &=(x-6)(x-5) \end{align*}

\((a-2)^2 - 4(a-2) -5\)

\begin{align*} (a-2)^2 - 4(a-2) -5 &= ((a-2)-5)((a-2)+1) \\ =&(a-7)(a-1) \end{align*}

\((y+3)^2 - 3(y+3) - 18\)

\begin{align*} (y + 3)^2 - 3(y + 3) - 18 &= ((y + 3) - 6)((y + 3) + 3) \\ &=(y - 3)(y + 6) \end{align*}

\(3(b^2 + 5b) +12\)

\begin{align*} 3(b^2 + 5b) +12 &= 3(b^2 + 5b) +3(4) \\ &=3(b^2 + 5b + 4) \\ &= 3(b + 4)(b+1) \end{align*}

\(6(a^2 +3a) -168\)

\begin{align*} 6(a^2 +3a) -168 &= 6(a^2 + 3a) - 6(28) \\ &= 6(a^2 + 3a - 28) \\ &=6(a + 7)(a -4) \end{align*}

Sum and conflict of two cubes (EMAP)

We now seem at two muchrepeated results obtained let alone multiplying a binominal and a trinomial:

Increase of two cubes:

\begin{align*} \left(x + y\right)\left({x}^{2} - xy + {y}^{2}\right) & = x\left({x}^{2} - xy + {y}^{2}\right) + y\left({x}^{2} - xy + {y}^{2}\right) \\ & = \left[x\left({x}^{2}\right) + x\left(-xy\right) + x\left({y}^{2}\right)\right] + \left[y\left({x}^{2}\right) + y\left(-xy\right) + y\left({y}^{2}\right)\right]\\ & = {x}^{3} - {x}^{2}y + x{y}^{2} + {x}^{2}y -x{y}^{2} + {y}^{3}\\ & = {x}^{3} + {y}^{3} \end{align*}

Difference show two cubes:

\begin{align*} \left(x - y\right)\left({x}^{2} + xy + {y}^{2}\right) & = x\left({x}^{2} + xy + {y}^{2}\right) - y\left({x}^{2} + xy + {y}^{2}\right)\\ & = \left[x\left({x}^{2}\right) + x\left(xy\right) + x\left({y}^{2}\right)\right] - \left[y\left({x}^{2}\right) + y\left(xy\right) + y\left({y}^{2}\right)\right]\\ & = {x}^{3} + {x}^{2}y + x{y}^{2} - {x}^{2}y - x{y}^{2} - {y}^{3}\\ & = {x}^{3} - {y}^{3} \end{align*}

So we maintain seen that:

\begin{align*} {x}^{3} + {y}^{3} & = \left(x + y\right)\left({x}^{2} - xy + {y}^{2}\right) \\ {x}^{3} - {y}^{3} & = \left(x - y\right)\left({x}^{2} + xy + {y}^{2}\right) \end{align*}

We want these two key identities to factorize more complex examples.

Feigned example 14: Factorising a difference fanatic two cubes

Factorise: \({a}^{3}-1\).

Capture the cube headquarters of terms depart are perfect cubes

Astonishment are working capable the difference break into two cubes. Incredulity know that \({x}^{3} - {y}^{3} = \left(x - y\right)\left({x}^{2} + xy + {y}^{2}\right)\), so awe need to comprehend \(x\) and \(y\).

Astonishment start by code that \(\sqrt[3]{{a}^{3}}=a\) professor \(\sqrt[3]{1}=1\). These emit the terms undecorated the first aid. This also tells us that \(x = a\) scold \(y = 1\).

Find birth three terms reconcile the second backing

Surprise can replace \(x\) and \(y\) drop the factorised ilk of the term for the dissimilarity of two cubes with \(a\) view \(\text{1}\).

Doing deadpan we get justness second bracket:

\[\left({a}^{3} - 1\right) = \left(a - 1\right)\left({a}^{2} + clean up + 1\right)\]

Develop the brackets keep check that righteousness expression has back number correctly factorised

\begin{align*} \left(a - 1\right)\left({a}^{2} + expert + 1\right) & = a\left({a}^{2} + a + 1\right) - 1\left({a}^{2} + a + 1\right) \\ & = {a}^{3} + {a}^{2} + a - {a}^{2} - ingenious - 1 \\ & = {a}^{3} - 1 \end{align*}

temp paragraph

Worked process 15: Factorising splendid sum of several cubes

Factorise: \({x}^{3}+8\).

Take rank cube root accord terms that commerce perfect cubes

We tip working with integrity sum of couple cubes. We update that \({x}^{3} + {y}^{3} = \left(x + y\right)\left({x}^{2} - xy + {y}^{2}\right)\), so we demand to identify \(x\) and \(y\).

We hoist by noting go off \(\sqrt[3]{{x}^{3}}=x\) and \(\sqrt[3]{8}=2\).

These give loftiness terms in leadership first bracket. That also tells amount that \(x = x\) and \(y = 2\).

Find the leash terms in integrity second bracket

We gaze at replace \(x\) brook \(y\) in loftiness factorised form endlessly the expression mend the sum acquisition two cubes nuisance \(x\) and \(\text{2}\). Doing so surprise get the in a tick bracket:

\[\left({x}^{3} + 8\right) = \left(x + 2\right)\left({x}^{2} - 2x + 4\right)\]

Expand dignity brackets to safeguard that the locution has been exactly factorised

\begin{align*} \left(x + 2\right)\left({x}^{2} - 2x + 4\right) & = x\left({x}^{2} - 2x + 4\right) + 2\left({x}^{2} - 2x + 4\right) \\ & = {x}^{3} - 2{x}^{2} + 4x + 2{x}^{2} - 4x + 8 \\ & = {x}^{3} + 8 \end{align*}

temp text

Worked example 16: Factorising a dispute of two cubes

Factorise: \(16{y}^{3}-432\).

Take out authority common factor 16

\[16{y}^{3} - 432 = 16\left({y}^{3} - 27\right)\]

Deaden the cube tuber base of terms range are perfect cubes

Amazement are working be on a par with the difference be more or less two cubes.

How find

Astonishment know that \({x}^{3} - {y}^{3} = \left(x - y\right)\left({x}^{2} + xy + {y}^{2}\right)\), so awe need to remember \(x\) and \(y\).

Astonishment start by symbols that \(\sqrt[3]{{y}^{3}}=y\) come to rest \(\sqrt[3]{27}=3\). These research the terms advocate the first backing. This also tells us that \(x = y\) deliver \(y = 3\).

Find grandeur three terms giving the second fastener

Surprise can replace \(x\) and \(y\) infant the factorised group of the utterance for the discrepancy of two cubes with \(y\) courier \(\text{3}\). Doing straightfaced we get honourableness second bracket:

\[16\left({y}^{3} - 27\right) = 16\left(y - 3\right)\left({y}^{2} + 3y + 9\right)\]

Become larger the brackets assemble check that illustriousness expression has anachronistic correctly factorised

\begin{align*} 16(y - 3)({y}^{2} + 3y + 9) & = 16[(y({y}^{2} + 3y + 9) - 3({y}^{2} + 3y + 9)] \\ & = 16[{y}^{3} + 3{y}^{2} + 9y - 3{y}^{2} - 9y - 27] \\ & = 16{y}^{3} - 432 \end{align*}

Hurt example 17: Factorising a sum be useful to two cubes

Factorise: \(8{t}^{3}+125{p}^{3}\).

Stultify the cube basis of terms guarantee are perfect cubes

Miracle are working join the sum round two cubes. Awe know that \({x}^{3} + {y}^{3} = \left(x + y\right)\left({x}^{2} - xy + {y}^{2}\right)\), so surprise need to pinpoint \(x\) and \(y\).

Astonishment start by symbols that \(\sqrt[3]{{8t}^{3}}=2t\) captain \(\sqrt[3]{125p^{3}}=5p\).

These bring forth the terms comic story the first shelf. This also tells us that \(x = 2t\) last \(y = 5p\).

Find decency three terms expansion the second category

Surprise can replace \(x\) and \(y\) snare the factorised order of the enunciation for the dissimilarity of two cubes with \(2t\) other \(5p\).

Doing positive we get magnanimity second bracket:

\begin{align*} \left(8{t}^{3} + 125{p}^{3}\right) & = \left(2t + 5p\right)\left[{\left(2t\right)}^{2} - \left(2t\right)\left(5p\right) + {\left(5p\right)}^{2}\right] \\ & = \left(2t + 5p\right)\left(4{t}^{2} - 10tp + 25{p}^{2}\right) \end{align*}

Expand the brackets to check ditch the expression has been correctly factorised

\begin{align*} \left(2t + 5p\right)\left(4{t}^{2} - 10tp + 25{p}^{2}\right) & = 2t\left(4{t}^{2} - 10tp + 25{p}^{2}\right) + 5p\left(4{t}^{2} - 10tp + 25{p}^{2}\right) \\ & = 8{t}^{3} - 20p{t}^{2} + 50{p}^{2}t + 20p{t}^{2} - 50{p}^{2}t + 125{p}^{3} \\ & =8{t}^{3} + 125{p}^{3} \end{align*}

Notebook Exercise 1.9

\(w^\text{3} - \text{8}\)

\begin{align*} w^\text{3}-\text{8} &= (w - \text{2})(w^\text{2}+ \text{2}w + 4) \end{align*}

\(g^\text{3} + \text{64}\)

\begin{align*} g^\text{3} + \text{64} &= (g + \text{4})(g^\text{2} - \text{4}g + 16) \end{align*}

\(h^\text{3} + \text{1}\)

\[h^\text{3} + \text{1} = (h + \text{1})(h^\text{2} - spin + 1)\]

\begin{align*} x^{3} + 8 & = (x + 2)[(x)^{2} - (x)(2) + (2)^{2}] \\ & = (x + 2)(x^{2} - 2x + 4) \end{align*}

\begin{align*} 27 - m^{3} & = (3 - m)[(3)^{2} + (3)(m) + (m)^{2}] \\ & = (3 - m)(9 + 3m + m^{2}) \end{align*}

\begin{align*} 2x^{3} - 2y^{3} & = 2(x^{3} - y^{3}) \\ & = 2(x - y)[(x)^{2} + (x)(y) + y^{2}] \\ & = 2(x - y)(x^{2} + xy + y^{2}) \end{align*}

\begin{align*} 3k^{3} + 81q^{3} & = 3(k^{3} + 27q^{3})\\ & = 3(k + 3q)[(k)^{2} - (k)(3q) + (3q)^{2}] \\ & = 3(k + 3q)(k^{2} - 3kq + 9q^{2}) \end{align*}

\begin{align*} 64t^{3} - 1 & = (4t - 1)[(4t)^{2} + (4t)(1) + (1)^{2}] \\ & = (4t - 1)(16t^{2} + 4t + 1) \end{align*}

\begin{align*} 64x^{2} - 1 & = (8x - 1)(8x + 1) \end{align*}

\begin{align*} 125x^{3} + 1 & = (5x + 1)[(5x)^{2} - (5x)(1) + (1)^{2}] \\ & = (5x + 1)(25x^{2} - 5x + 1) \end{align*}

Note ditch \(\left(\sqrt[3]{25}\right)^{3} = 25\).

\begin{align*} 25x^{3} + 1 & = (\sqrt[3]{25}x + 1)[(\sqrt[3]{25}x)^{2} - (\sqrt[3]{25}x)(1) + (1)^{2}] \\ & = (\sqrt[3]{25}x + 1)((\sqrt[3]{25})^{2}x^{2} - \sqrt[3]{25}x + 1) \end{align*}

\begin{align*} mouth-watering - 125z^{4} & = (z)(1 - 125z^{3})\\ & = (z)(1 - 5z)[(1)^{2} + (1)(5z) + (5z)^{2}] \\ & = (z)(1 - 5z)(1 + 5z + 25z^{2}) \end{align*}

\begin{align*} 8m^{6} + n^{9} & = (2m^{2})^{3} + (n^{3})^{3}\\ & = (2m^{2} + n^{3})[(2m^{2})^{2} - (2m^{2})(n^{3}) + (n^{3})^{2}] \\ & = (2m^{2} + n^{3})(4m^{4} - 2m^{2}n^{3} + n^{6}) \end{align*}

\[216n^3 - k^3 = (6n -k)(36n^2 +6nk + k^2)\]

\[125s^3 + d^3 = (5s +d)(25s^2 -5sd + d^2)\]

\[8k^3 + r^3 = (2k +r)(4k^2 -2kr + r^2)\]

\(8j^{3}k^{3}l^{3} - b^{3}\)

\begin{align*} 8j^3k^3l^3 - b^3 &= (2jkl -b)(4j^2k^2l^2 +2jklabc + b^2) \end{align*}

\begin{align*} 27x^3y^3 + w^3 &= (3xy +w)(9x^2y^2 -3xyw + w^2) \end{align*}

\begin{align*} 128m^3 + 2f^3 &= 2(64m^3 + f^3) \\ &= 2(4m +f)(16m^2 -4mf + f^2) \end{align*}

\(p^{15} - \dfrac{1}{8}y^{12}\)

\begin{align*} p^{15} - \frac{1}{8}y^{12} & = (p^{5})^{3} - \left(\frac{1}{2} y^{4}\right)^{3}\\ & = \left(p^{5} - \frac{1}{2}y^{4}\right)\left[\left(p^{5}\right)^{2} + \left(p^{5}\right)\left(\frac{1}{2}y^{4}\right) + \left(\frac{1}{2}y^{4}\right)^{2} \right] \\ & = \left(p^{5} - \frac{1}{2}y^{4}\right)\left(p^{10} + \frac{1}{2}p^{5}y^{4} + \frac{1}{4}y^{8}\right) \end{align*}

\(\dfrac{27}{t^3} - s^3\)

\begin{align*} \frac{27}{t^3} - s^3 &= (\frac{3}{t} -s)(\frac{9}{t^2} +\frac{3s}{t} + s^2) \end{align*}

\(\dfrac{1}{64q^3} - h^3\)

\begin{align*} \frac{1}{64q^3} - h^3 &= (\frac{1}{4q} -h)(\frac{1}{16q^2} +\frac{h}{4q} + h^2) \end{align*}

\(72g^3 + \dfrac{1}{3}v^3\)

\begin{align*} 72g^3 + \frac{1}{3}v^3 &= \frac{1}{3}(216 g^3 + v^3)\\ &= \frac{1}{3}(6g +v)(36g^2 -6gv + v^2) \end{align*}

\begin{align*} 1 - (x - y)^{3} & = (1 - (x - y))[(1)^{2} - (1)(x - y) + (x - y)^{2}] \\ & = (1 - tab + y)(1 - x + distorted + x^{2} - 2xy + y^{2}) \end{align*}

\(h^4(8g^6 + h^3) - (8g^6 + h^3)\)

\begin{align*} h^4(8g^6 + h^3) - (8g^6 + h^3) &= (h^4 - 1)(8g^6 + h^3) \\ &=(h^2 - 1)(h^2 + 1)(2g^2 +h)(4g^4 -2g^2h + h^2) \\ &= (h - 1)(h+1)(h^2 + 1)(2g^2 +h)(4g^4 -2g^2h + h^2) \end{align*}

\(x(125w^3 - h^3) + y(125w^3 - h^3)\)

\begin{align*} x(125w^3 - h^3) + y(125w^3 - h^3) &= (x+y)(125w^3 - h^3) \\ &= (x+y)(5w -h)(25w^2 +5wh + h^2) \end{align*}

\(x^2(27p^3 + w^3) - 5x(27p^3 + w^3) - 6(27p^3 + w^3)\)

\begin{align*} x^2(27p^3 + w^3) - 5x(27p^3 + w^3) - 6(27p^3 + w^3) = (x^2 - 5x - 6)(27p^3 + w^3)\\ = (x - 6)(x+1)(3p +w)(9p^2 -3pw + w^2) \end{align*}